embeddinggemma-300m
Text Embeddings • GoogleEmbeddingGemma is a 300M parameter, state-of-the-art for its size, open embedding model from Google, built from Gemma 3 (with T5Gemma initialization) and the same research and technology used to create Gemini models. EmbeddingGemma produces vector representations of text, making it well-suited for search and retrieval tasks, including classification, clustering, and semantic similarity search. This model was trained with data in 100+ spoken languages.
Usage
Workers - TypeScript
  export interface Env {  AI: Ai;}
export default {  async fetch(request, env): Promise<Response> {
    // Can be a string or array of strings]    const stories = [      "This is a story about an orange cloud",      "This is a story about a llama",      "This is a story about a hugging emoji",    ];
    const embeddings = await env.AI.run(      "@cf/google/embeddinggemma-300m",      {        text: stories,      }    );
    return Response.json(embeddings);  },} satisfies ExportedHandler<Env>;Python
  import osimport requests
ACCOUNT_ID = "your-account-id"AUTH_TOKEN = os.environ.get("CLOUDFLARE_AUTH_TOKEN")
stories = [  'This is a story about an orange cloud',  'This is a story about a llama',  'This is a story about a hugging emoji']
response = requests.post(  f"https://api.cloudflare.com/client/v4/accounts/{ACCOUNT_ID}/ai/run/@cf/google/embeddinggemma-300m",  headers={"Authorization": f"Bearer {AUTH_TOKEN}"},  json={"text": stories})
print(response.json())curl
  curl https://api.cloudflare.com/client/v4/accounts/$CLOUDFLARE_ACCOUNT_ID/ai/run/@cf/google/embeddinggemma-300m  \  -X POST  \  -H "Authorization: Bearer $CLOUDFLARE_API_TOKEN"  \  -d '{ "text": ["This is a story about an orange cloud", "This is a story about a llama", "This is a story about a hugging emoji"] }'Parameters
* indicates a required field
Input
-  
textone of required-  
0stringInput text to embed. Can be a single string or a list of strings.
 -  
1arrayInput text to embed. Can be a single string or a list of strings.
-  
itemsstring 
 -  
 
 -  
 
Output
-  
dataarray requiredEmbedding vectors, where each vector is a list of floats.
-  
itemsarray-  
itemsnumber 
 -  
 
 -  
 -  
shapearray requiredShape of the embedding data as [number_of_embeddings, embedding_dimension].
-  
itemsinteger 
 -  
 
API Schemas
The following schemas are based on JSON Schema
{    "type": "object",    "properties": {        "text": {            "oneOf": [                {                    "type": "string"                },                {                    "type": "array",                    "items": {                        "type": "string"                    }                }            ],            "description": "Input text to embed. Can be a single string or a list of strings."        }    },    "required": [        "text"    ]}{    "type": "object",    "properties": {        "data": {            "type": "array",            "items": {                "type": "array",                "items": {                    "type": "number"                }            },            "description": "Embedding vectors, where each vector is a list of floats."        },        "shape": {            "type": "array",            "items": {                "type": "integer"            },            "minItems": 2,            "maxItems": 2,            "description": "Shape of the embedding data as [number_of_embeddings, embedding_dimension]."        }    },    "required": [        "data",        "shape"    ]}Was this helpful?
- Resources
 - API
 - New to Cloudflare?
 - Directory
 - Sponsorships
 - Open Source
 
- Support
 - Help Center
 - System Status
 - Compliance
 - GDPR
 
- Company
 - cloudflare.com
 - Our team
 - Careers
 
- © 2025 Cloudflare, Inc.
 - Privacy Policy
 - Terms of Use
 - Report Security Issues
 - Trademark